26 de dez. de 2025

Problem 11

Summation of primes

Problem 11

In the 20x20 grid below, four numbers along a diagonal line have been marked in red.

08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70 67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21 24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72 21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95 78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92 16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57 86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58 19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16 20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48

08022297381500400075040507785212507791084949994017811857608717409843694804566200814931735579142993714067538830034913366552709523046011426924685601325671370236912231167151676389419236542240402866331380244732609903450244753353783684203517125032988128642367102638406759547066183864706726206802621220956394396308409166499421245558056673992697177878968314883489637221362309750076442045351400613397343133957817532822753167159403800462161409535692163905429635314755588824001754243629855786560048357189070544443744602158515417581980816805944769287392138652177704895540045208839735991607975732162626793327986688366887576220720346336746551232639353690442167338253911249472180846293240627636206936417230238834629969826759857404361620733529783190017431497148868116235705540170547183515469169233486143520189196748\begin{matrix} 08 & 02 & 22 & 97 & 38 & 15 & 00 & 40 & 00 & 75 & 04 & 05 & 07 & 78 & 52 & 12 & 50 & 77 & 91 & 08 \\ 49 & 49 & 99 & 40 & 17 & 81 & 18 & 57 & 60 & 87 & 17 & 40 & 98 & 43 & 69 & 48 & 04 & 56 & 62 & 00 \\ 81 & 49 & 31 & 73 & 55 & 79 & 14 & 29 & 93 & 71 & 40 & 67 & 53 & 88 & 30 & 03 & 49 & 13 & 36 & 65 \\ 52 & 70 & 95 & 23 & 04 & 60 & 11 & 42 & 69 & 24 & 68 & 56 & 01 & 32 & 56 & 71 & 37 & 02 & 36 & 91 \\ 22 & 31 & 16 & 71 & 51 & 67 & 63 & 89 & 41 & 92 & 36 & 54 & 22 & 40 & 40 & 28 & 66 & 33 & 13 & 80 \\ 24 & 47 & 32 & 60 & 99 & 03 & 45 & 02 & 44 & 75 & 33 & 53 & 78 & 36 & 84 & 20 & 35 & 17 & 12 & 50 \\ 32 & 98 & 81 & 28 & 64 & 23 & 67 & 10 & *26* & 38 & 40 & 67 & 59 & 54 & 70 & 66 & 18 & 38 & 64 & 70 \\ 67 & 26 & 20 & 68 & 02 &62 & 12 & 20 & 95 & *63* &94 &39 &63 &08 &40 &91 &66 &49 &94 & 21 \\ 24 & 55 & 58 & 05 & 66 &73 & 99 & 26 & 97 & 17 & *78* &78 &96 &83 &14 &88 &34 &89 &63 & 72 \\ 21 & 36 & 23 & 09 & 75 &00 & 76 & 44 & 20 & 45 & 35 & *14* &00 &61 &33 &97 &34 &31 &33 & 95 \\ 78 & 17 & 53 & 28 & 22 &75 & 31 & 67 & 15 & 94 & 03 & 80 & 04 & 62 & 16 & 14 & 09 & 53 & 56 & 92 \\ 16 & 39 & 05 & 42 & 96 &35 & 31 & 47 & 55 & 58 & 88 & 24 & 00 & 17 & 54 & 24 & 36 & 29 & 85 & 57 \\ 86 & 56 & 00 & 48 & 35 &71 & 89 & 07 & 05 & 44 & 44 & 37 & 44 & 60 & 21 & 58 & 51 & 54 & 17 & 58 \\ 19 & 80 & 81 & 68 & 05 &94 & 47 & 69 & 28 & 73 & 92 & 13 & 86 & 52 & 17 & 77 & 04 & 89 & 55 & 40 \\ 04 & 52 & 08 & 83 & 97 &35 & 99 & 16 & 07 & 97 & 57 & 32 & 16 & 26 & 26 & 79 & 33 & 27 & 98 & 66 \\ 88 & 36 & 68 & 87 & 57 &62 & 20 & 72 & 03 & 46 & 33 & 67 & 46 & 55 & 12 & 32 & 63 & 93 & 53 & 69 \\ 04 & 42 & 16 & 73 & 38 &25 & 39 & 11 & 24 & 94 & 72 & 18 & 08 & 46 & 29 & 32 & 40 & 62 & 76 & 36 \\ 20 & 69 & 36 & 41 & 72 &30 & 23 & 88 & 34 & 62 & 99 & 69 & 82 & 67 & 59 & 85 & 74 & 04 & 36 & 16 \\ 20 & 73 & 35 & 29 & 78 &31 & 90 & 01 & 74 & 31 & 49 & 71 & 48 & 86 & 81 & 16 & 23 & 57 & 05 & 54 \\ 01 & 70 & 54 & 71 & 83 &51 & 54 & 69 & 16 & 92 & 33 & 48 & 61 & 43 & 52 & 01 & 89 & 19 & 67 & 48 \\ \end{matrix}

The product of these numbers is 26 x 63 x 78 x 14 = 1788696.

What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20x20 grid?

Tentativa 1 - 26/12/2025

Se fizer um brute force de cada casa e multiplica as 4 casas que estão em cada direção, (i _ i+1 _ i+2 * i+3) isso verifica o maior produto na horizontal

Na vertical daria pra aplicar a mesma estratégia

E para as diagonais, fazer um para cima esquerda, cima direita, baixo esquerda e baixo direita

JavaScript REPL

Tentativa 2 - 26/12/2025

Tentando fazer todas as verticais, todas horizontais de uma vez

JavaScript REPL

Deu certo 70600674

Diagonal para cima e para baixo ja bastava

Recent Articles

Advent of Code 2025 - 01
Desafios
Added on: 28 de dez. de 2025
Sobre Project Euler
Desafios
Added on: 28 de dez. de 2025
Problem 20
Desafios
Added on: 28 de dez. de 2025
Problem 21
Desafios
Added on: 28 de dez. de 2025
Problem 22
Desafios
Added on: 28 de dez. de 2025

© 2026